On the trail of the big questions of particle physics
In seeking an explanation to what holds the world together at its core, particle physicists face many unresolved mysteries. The matter and energy we know make up only five percent of the cosmos; but what is the remaining “dark matter” and “dark energy” made of? Why is there so much matter but so little antimatter in the universe? And why do the second most common known particles in the universe, called neutrinos, have such tiny masses? To answer these fundamental questions, the new Clausius Professor Jun.-Prof. Dr. Lena Funcke and her team are developing models beyond the Standard Model of particle physics and applying novel computational methods for calculating model predictions for future experiments. This will be a new research focus at the University of Bonn in the Transdisciplinary Research Area “Building Blocks of Matter and Fundamental Interactions” (TRA “Matter”).
Astronomy: Observation puzzles researchers
An international team of astrophysicists has made a puzzling discovery while analyzing certain star clusters. The University of Bonn played a major role in the study. The finding challenges Newton's laws of gravity, the researchers write in their publication. Instead, the observations are consistent with the predictions of an alternative theory of gravity. However, this is controversial among experts. The results have now been published in the Monthly Notices of the Royal Astronomical Society.
Physical effect also valid in the quantum world
Physicists at the University of Bonn have experimentally proven that an important theorem of statistical physics applies to so-called "Bose-Einstein condensates." Their results now make it possible to measure certain properties of the quantum “superparticles” and deduce system characteristics that would otherwise be difficult to observe. The study has now been published in Physical Review Letters.