The ATLAS collaboration at the Large Hadron Collider (LHC) reported the first observation of top quarks in collisions between lead ions in a talk held at CERN last week. Members of the research group of Prof. Dr. Matthias Schott from the Physikalisches Institut at the University of Bonn have been contributing to this new study. The observation of top-quark pairs represents a significant step forward in heavy-ion collision physics, paving the way for new measurements of the quark–gluon plasma that is created in these collisions and delivering fresh insights into the nature of the strong force that binds protons, neutrons and other composite particles together.
The University of Bonn has been successful twice in the funding line for the Synergy Grants from the European Research Council (ERC) with other partners. The GravNet project is building a global detector network to search for high-frequency gravitational waves. The CeLEARN project coordinated by the Max Planck Institute for Neurobiology of Behavior – CAESAR aims to decode how single cells learn from their environment. The ERC uses Synergy Grants to support research groups in which different skills, knowledge, and resources are brought together in order to tackle ambitious research questions. The projects will receive several million euros of support in the next six years.
Bethe Center for Theoretical Physics
From 14 to 20 September 2024, the University of Bonn celebrated the 70th anniversary of the famous European nuclear research center CERN for an entire week. With a varied program of science slams, physics shows and a concluding symposium, the focus was on the fascinating world of particle physics.
Physicists at the University of Bonn and the University of Kaiserslautern-Landau (RPTU) have created a one-dimensional gas out of light. This has enabled them to test theoretical predictions about the transition into this exotic state of matter for the first time. The method used in the experiment by the researchers could be used for examining quantum effects. The results have been published in the journal “Nature Physics.”
In her ERC Starting Grant project, “PiCo—Towards constraining the Pillars of our Cosmological model using combined probes”, Assistant Professor Andrina Nicola from the Argelander Institute for Astronomy at the University of Bonn will be exploring two fundamental questions of modern physics: What mechanism gave rise to the primordial fluctuations seeding all the structures seen in the Universe today? And what is the cause of the Universe’s late-time accelerated expansion?
Thousands of light particles can merge into a type of “super photon” under certain conditions. Researchers at the University of Bonn have now been able to use “tiny nano molds” to influence the design of this so-called Bose-Einstein condensate. This enables them to shape the speck of light into a simple lattice structure consisting of four points of light arranged in quadratic form. Such structures could potentially be used in the future to make the exchange of information between multiple participants tap-proof. The results have now been published in the journal Physical Review Letters.
The European nuclear research centre CERN is turning 70, celebrate with us from 14-20 September 2024 at the University of Bonn. The major anniversary of particle physics research in Europe will be celebrated on a big stage in Berlin this week and we would also like to contribute to the celebrations in Bonn with a series of events.