DFG Projekte
Die Deutsche Forschungsgemeinschaft (DFG) gehört zu den größten Drittmittel-Geldgebern der Rheinischen Friedrich-Wilhelms-Universität Bonn. In unserer Fachgruppe spielen derzeit Verbünde wie Sonderforschungsbereiche (SFB) / Transregios (TRR), sowie Beteiligungen an SFBs eine wichtige Rolle.
Sonderforschungsbereiche der Universität Bonn
Sprecher
Prof. Dr. Carsten Urbach
Helmholtz-Institut für Strahlen- und Kernphysik
Nussallee 14-16
D-53115 Bonn
Zusammenfassung
A complete description and understanding of nature inevitably requires quantum theory. The study of quantum systems is, therefore, of upmost importance, but also highly challenging, for instance due to the state space growing exponentially with system size or due to long-range interactions. Computational methods have grown – often in absence of alternatives – to become prime and powerful tools to approach these challenges. Still, many problems are just at or yet beyond the threshold of feasibility.
The CRC initiative NuMeriQS brings together scientists from the fields of theoretical particle, nuclear, and condensed matter physics and theoretical chemistry on the one hand with mathematicians and computer scientists on the other hand. They will all work together in a truly interdisciplinary effort on pushing our understanding of the structure and dynamics in quantum systems by enabling progress on the methodological, algorithmic and HPC implementation front in a cross-field collaboration. NuMeriQS aims to leverage the sophisticated numerical methods developed separately in physics
and chemistry by confronting them with the state of the art in numerical mathematics and computer science to tackle the central challenges that all fields investigating complex quantum systems are facing, which are the curse of dimensionality, due to an exponential growth of the state space with
system size, as well as the need to adapt to new computing architectures of ever increasing complexity. Combining the advantages of different approaches to alleviate their respective weaknesses is an extremely promising strategy with an enormous potential for creating transformative advances in both physics and chemistry. It requires a common and interdisciplinary effort merging the diverse expertise of the researchers from different fields and promoting cross-field applications to exploit synergies as proposed in NuMeriQS.
The team for this initiative comprises renowned researchers from the aforementioned fields working at the Rheinische Friedrich-Wilhelms-Universität Bonn (UBo) and the two external institutions Forschungszentrum Jülich (FZJ) and Max-Planck–Institut für Kohlenforschung (MPI KoFo). Moreover,
with the FZJ and its Jülich Supercomputing Centre (JSC) a world leading player in high-performance and quantum computing is contributing to NuMeriQS. Therefore, this CRC is located in a highly fertile environment ideally suited for this endeavour. The initiative comes at a time where potentially transformative technologies become available, like the first exascale computing installations, or promise to become available, like digital quantum computers. These new technologies represent opportunities which will be approached in NuMeriQS in a collaborative effort in order to tackle the challenges efficiently and to enable transformative advances within each field.
Beteiligte Institutionen
Forschungszentrum Jülich GmbH
Max-Planck–Institut für Kohlenforschung
Laufzeit
01.04.2024 - 31.12.2027 (1. Förderperiode)
SFB/Transregios
Standortsprecherin
Prof. Dr. Corinna Kollath
Helmholtz-Institut für Strahlen- und Kernphysik
Nussallee 14-16
53115 Bonn
Zusammenfassung
Ein weit verbreitetes Paradigma der Physik ist, dass Quanteneffekte nur dann für die Eigenschaften eines Systems ausschlaggebend sind, wenn dieses so gut wie möglich von seiner Umgebung isoliert ist. Diese Isolation ist Grundvoraussetzung vieler Quantentechnologien. Der zentrale Ansatz des SFB/TR 185 ist die umgekehrte Herangehensweise. Wir betrachten die Kopplung von Quantensystemen an Reservoire als potentiell nützliches Werkzeug und nicht als ein unvermeidbares Ärgernis. Die Vision des SFBs ist es, externen Antrieb und maßgeschneiderte Reservoire einzusetzen, um die Effekte generischer, unkontrollierter Umgebungen zu kompensieren und eine toolbox für die Kontrolle von Ein- und Vielteilchen-Quantensystemen mittels offener Systeme zu entwickeln. Dieses beinhaltet die Erzeugung, Kontrolle und Stabilisierung von interessanten Quantenzuständen ebenso wie die Anregung und Manipulation kollektiver Prozesse. Der Zugang umfasst darüber hinaus die Zusammenführung des sehr aktiven Forschungsfeldes topologischer Systeme mit Kontrollverfahren basierend auf offenen Systemen. Das Ziel ist es, die grundlegenden Mechanismen offener Systeme zu verstehen und diese als Werkzeug zu verwenden, welches Möglichkeiten eröffnet, die weit über das hinausgehen, was in geschlossenen Quantensystemen erreichbar ist. Das Forschungsfeld der Kontrolle durch Kopplung an massgeschneiderte Reservoire ist ein junges Feld und der SFB/TR 185 hat während der ersten Förderperiode maßgeblich an seiner Entwicklung mitgewirkt. Die experimentellen Platformen unserer Forschung sind Atome und Photonen, da für diese Systeme die verfügbaren Kontrolltechniken und Messverfahren am weitesten entwickelt sind. Für diese ist es oft möglich, eine mikroskopische Kontrolle und ein detailliertes Verständnis von Systemen und Umgebungen zu erlangen. Die betrachteten Systeme erstrecken sich von Photonen-Kondensaten über einzelne Atome, die an Quantenlicht gekoppelt sind, bis hin zu ultrakalten Quantengasen. Das Forschungsprogramm gliedert sich in drei komplementäre Teilbereiche. Im Bereich A, "Quanten-systeme aus wenigen Teilchen und Reservoire", wird der Einfluß maßgeschneiderter Umgebungen auf einzelne oder wenige Quantensysteme untersucht. Hier bieten die gewählten experimentellen Plattformen einen maximalen Grad der Kontrolle. Im Fokus der Aktivitäten im Forschungsbereich B, "Kontrolle quantenmechanischer Vielteilchensysteme durch Reservoire", stehen die Erzeugung und Manipulation kollektiver Zustände und Prozesse in komplexen Vielteilchensystemen. Aufgrund der Komplexität der Systeme können hier typischerweise nicht alle Freiheitsgrade kontrolliert und gemessen werden und die theoretische Beschreibung ist schwierig. Ziel der Forschung im Bereich C, "Topologische Zustände in Systemen aus Atomen und Photonen", ist es, neue Methoden der Stabilisierung von Quantenzuständen zu entwickeln, die generische Eigenschaften topologischer Systeme mit Kontrollverfahren auf der Basis offener Systeme verbinden.
Beteiligte Institution:
Technische Universität Kaiserslautern (Sprecher-Hochschule)
Laufzeit
01.07.2016 - 30.06.2024 (2. Förderperiode)
Beteiligungen an SFB
Teilprojektleiter Universität Bonn
Prof. Dr. Frank Bigiel
Argelander-Institut für Astronomie
Auf dem Hügel 71
53121 Bonn
Prof. Dr. Frank Bertoldi
Argelander-Institut für Astronomie
Auf dem Hügel 71
53121 Bonn
Prof. Dr. Cristiano Porciani
Argelander-Institut für Astronomie
Auf dem Hügel 71
53121 Bonn
Zusammenfassung
Due to their short lifetime and high energy output, massive stars drive the evolution of galaxies across cosmic time. This Collaborative Research Centre studies the gaseous environments (“habitats”) within which massive stars are born and with which they strongly interact thereafter. From its begin in 2023 over its anticipated 12-year lifetime, the CRC 1601 will connect the physical processes that govern the habitats of massive stars across from sub-parsec to mega-parsec scale environments — from the present-day Milky Way to way back shortly after the Big Bang, when massive stars drove the re-ionisation of the inter-galactic medium .
The Bonn and Cologne CRC groups are a major partner in the CCAT telescope project that constitutes a central aspect of the CRC. The Fred-Young Submillimeter Telescope is currently under construction at a 5600 meter altitude site in the Chilean Andes and is expected to commence observations in the mm and sub-mm wavelength range in early 2026.
Sprecher: Universität zu Köln
Laufzeit: seit 2023
Teilprojektleiterin Universität Bonn
Prof. Dr. Corinna Kollath
Helmholtz-Institut für Strahlen- und Kernphysik
Nußallee 14-16
53115 Bonn
Zusammenfassung
Die Entwicklung neuer Materialen ist eine wichtige Basis für technologische Innovationen, die unser tägliches Leben grundlegend - wenn auch oft unbemerkt - verändern. Beispiele hierfür sind etwa die Entwicklung neuartiger Datenspeicher, deren Lese- und Schreibköpfe in geschickter Weise den Magnetwiderstand nutzen. Die Entdeckung zweidimensionaler Materialien wie Graphen hat weltweit eine Welle an Forschungsinitiativen ausgelöst mit dem Ziel, innovative Anwendungen dieser faszinierenden Materialien zu erkunden. Ähnliches gilt für Spin-Bahn-gekoppelte Materialien wie die kürzlich entdeckten topologischen Isolatoren, deren neuartigen Eigenschaften ebenfalls komplett neue Funktionalitäten erwarten lassen. Der Schlüssel zu diesen Entwicklungen war eine Grundlagenforschung, welche die Entdeckung neuer Materialien, die Entwicklung neuer theoretischer Konzepte und die Suche nach dem Verständnis unbekannter Phänomene zum Ziel hatte. Die materialorientierte Grundlagenforschung ist daher ein sich rasch entwickelndes, interdisziplinäres, hoch kompetitives Feld. An vorderster Front dieses Feldes steht heute die Untersuchung von Quantenmaterialien, in denen relativistische Effekte wie die Spin-Bahn-Wechselwirkung und nicht-triviale Topologie eine tragende Rolle spielen. Gleichzeitig zeigt sich, dass in Materialien mit starken elektronischen Korrelationen besonders interessante Ordnungsphänomene wie Supraleitung, Magnetismus und andere exotische Phasen realisiert werden können. Genau an der Schnittstelle dieser Forschungsfelder möchten wir einen Sonderforschungs-bereich bilden mit den zentralen Zielen, Quantenmaterialien zu synthetisieren, umfassend zu charakterisieren und ultimativ eine präzise Kontrolle der physikalischen Eigenschaften dieser Materialien zu gewinnen – um ihre Dynamik zu verstehen, sie zu kontrollieren und neue Funktionalitäten zu ermöglichen. Gerade in Materialien, die starke Korrelationen mit interessanten topologischen Eigenschaften verknüpfen, erwarten wir eine Vielzahl von neuartigen, bisher noch unentdeckten Phänomenen. Um diese ambitionierten Ziele zu erreichen, haben wir ein breit aufgestelltes Team von Wissen-schaftlern aus experimenteller und theoretischer Physik, Kristallographie und Chemie geformt. Unterstützt wird dieses Team durch die ausgezeichnete wissenschaftliche Infrastruktur der Universität zu Köln – etwa den Kernprofilbereich „Quantenmaterie und -materialien“, den die Universität zu Köln als Teil ihrer institutionellen Strategie im Rahmen der Exzellenzinitiative etabliert hat. Das Kölner Team wird ergänzt durch zwei exzellente Gruppen mit unentbehrlichen Zusatzkompetenzen an der Universität Bonn und dem Forschungszentrum Jülich. Eine wichtige Basis unseres Forschungs-vorhabens ist es, den kompletten Kreislauf von „Materialien – physikalische Eigenschaften – Theorie“ innerhalb des geplanten Sonderforschungsbereichs zu realisieren, der bereits heute ein Eckpfeiler des Erfolgs der Kölner Festkörperphysik ist. Dabei werden physikalische Phänomene und Materialen aus einer Vielzahl unterschiedlicher Blickwinkel untersucht, die wir in fünf „focus areas“ zusammengefasst haben. Der geplante Sonderforschungsbereich wird den Forschungsschwerpunkt der Kölner Festkörperphysik und die assoziierten Gruppen in Bonn und Jülich stärken und zu einem international führenden Zentrum der Festkörperphysik ausbauen. Unsere Vision ist es, neuartige kollektive Phänomene in Quantenmaterialien, die aus dem Wechselspiel von Spin-Bahn-Wechselwirkung, Korrelationen und Topologie entstehen, zu entdecken, zu verstehen und zu kontrollieren.
Sprecher: Universität zu Köln
Laufzeit
seit 2016